#DragonXi AI | Artificial Intelligence powered DragoonXi
#Solinftec | Agricultural Platform piwered by AI | Integrated from pre-planting to post-harvesting | Algorithms reducing time spent driving and idling | Route optimization | Machine learning to automate operations
#Langchain | generative AI ecosystem | Pinecone
#Pulumi | generative AI ecosystem | Pinecone
#Vercel | generative AI ecosystem | Pinecone
#Pinecone | Serverless vector database architecture
#Anthropic | generative AI ecosystem | Pinecone
#Field AI | Autonomous systems for machines deployed to fields | Off-road autonomy
#AI Port | AI Research | Port of Rotterdam
#Airwayz | AI based unmanned aircraft traffic management (UTM) system
#Awake.Al | Digital twin for Port of Rotterdam
#picknik.ai | Remote Robot Control | Model based design approach of Behavior Trees
#artificialanalysis.ai | Independent analysis of AI models and hosting providers
#Croq | LPU Inference Engine | Fast inference for computationally intensive applications with a sequential component | Better performance on LLMs compared to GPUs | Support PyTorch, TensorFlow, and ONNX for inference | GroqCloud is powered by scaled network of Language Processing Units | HW: crack, node, card
#Anyscale | generative AI ecosystem | Pinecone
#Cohere | generative AI ecosystem | Pinecone
#Confluent | generative AI ecosystem | Pinecone
#SEA.AI | Detecting floating objects early | Using thermal and optical cameras to catch also objects escaping conventional systems such as Radar or AIS: Unsignalled crafts or other floating obstacles, e.g., containers, tree trunks, buoys, inflatables, kayaks, persons over board | System computes input from lowlight and thermal cameras, using Machine Vision technology, deep learning capabilities and proprietary database of millions of annotated marine objects | High-resolution lowlight and thermal cameras | Real-time learning of water surface patterns | Searching for anomalies | Distinguishing water from non-water | Comparing anomalies with neural network | Recognize objects by matching combination of filters | Augmented reality video stream combined with map view | Intelligent alarming based on threat level | Detecting persons in water | On-board cameras with integrated image processing | Providing digital understanding of vessel surroundings on water | SEA.AI App on smartphone or tablet
#Catepillar | Cat Command for Excavating | Remote control system | Cat Command station | Non line of sight remote control | Improving machine productivity | Fast restart of operations | Virtual cab with familiar controls and machine displays | Up to five different machines controlled by one user | Access to machine setting just like in the machine | Solution to workforce shortages | Training advantages for newer operators | Opportunities to those with physical limitations | Attracts a new generation of workers | Increases the longevity of experienced operators
#Robotion | Industrial Robots
#RNA Automation | Vision systems | Automated feeding; handling, robotic systems
#Kinova Robotics | Ultra lightweight professional robots
#ABB Robotics | Robotics | Machine automation | Robotics campus | Collaborative and industrial robot arms | Autonomous mobile robots (AMRs) | Innovation hub for robotics startups | Offering startups support to run proof of concepts, lend products and technology expertise and venture capital
#Boston Dynamics | Spot robot | Radiation mapping autonomously | Gamma ray sensors | Personal dosimeters | Neutron detection | Alpha inspection with pancake sensors| Ability to withstand large amounts of radiation | Cabability to carry a variety of radiation detection payloads | Ongoing safe operation and eventual decommissioning of nuclear power plants | Machine learning algorithms | AI
#Navvis | Accurate mobile mapping of indoor spaces
#Fetch Robotics | Just in time material delivery in manufacturing
#RGoRobotics | Perception Engine | AGV | AMR | Environments where machines and people operate in close proximity
#GAM | Robotic and servo gear | GPL Robotic Planetary | GCL Cycloidal | GSL Strain Wave | Precision Rack & Pinion | Linear Mount Products for Cartesian Robots | Manufacturing | IL, U.S.
#Cobot | Collaborative Robots | Universal Robotics (UR) | Techman | AUBO
#HELUKABEL | Cables, Wires and Accessories for Robotics | Sensor technology and data | Network and bus technology | Control and motor | Customer specific solutions
#Agility Robotics | Humanoid Robot Factory in Salem,Oregon | Digit | Bipedal robot | Moving totes and packages | Unloading trailers at warehouses
#Harmonic Drive | Precision servo actuators | Gearheads | Gear component sets
#Enabled Robotics | Intralogistics automation for the manufacturing industry | Picking of objects as well as their transportation | Mobile cobot | Collaborative robot
#Built Robotics | Autonomous solar piling robot | Robotic pile driver | RPD 35 surveys, distributes, drives, and records every pile for an all-in-one machine | Hammer working at 500 blows per minute | Sled carrying system | Pile plot plan is uploaded to the robot computer | Pile plan is automatically divided into sequences of piles | Each sequence is manually loaded into pile baskets | Pile baskets are forked onto sleds with telehandler | Autonomous piling task is initiated | Robot installs all the piles in its payload, then returns to its starting position to be reloaded
#Apptronik | Human centered robotic systems | Robotics systems operating in close proximity to humans | Astra upper body humanoid robot | Dreamer upper body humanoid developed by MEKA for UT Austin HCRL
#ANYbotics | ANYmal legged inspector robot | Read off value of analog gauges | Read out analog counters | Check state of lever-operated valves | Capture photo for manual analysis | Continuous bookkeeping of structural changes | Scanning and documenting 3d environment data as a digital twin | Workforce browser-based ANYbotics Field Operator application | Field Operator mode: enables to steer, set points of interest, visualize recorded facility maps, and create inspection missions | Mission Controller mode: enables to safely control single ANYmal, monitor fleet, and execute validated missions from thousands of kilometers away | Robot Administrator: unlocks protected functions for fleet-wide software upgrades
#Figure.ai | General purpose humanoid | Robots to handle general tasks | Enabling robots to learn and interact with environment | Humanoids designed to caring for elderly or even cooking meals | Focusing primarily on industrial warehouse applications to start
#ForwardX Robotics | Increasing picking productivity by reducing wasted movement for workflow efficiency
#UiPath | Robotic Process Automation (RPA)
#Liebherr | Mining machine automation | Open and interoperable mine automation platforms | Autonomous haulage technology | Machine automation for excavators and dozers | Onboard Analytics
#Bobcat | Compact equipment | Loaders | Excavators | Compact tractors | Utility products | Telehandlers | Mowers
#SparkAI | Combining people and technology to resolve AI edge cases, false positives, exceptions encountered live in production | Launch & scale automation products faster | Inject augmented human cognition anywhere in production | Launch new products with imperfect AI | Bootstrap new models for evaluation | Stop training in the lab | Deploy product to customers sooner | Let SparkAI protect against edge cases | Derive deeper real world insights on where your model is struggling | All while product is live, generating revenue | Autonomous tractor | John Deere | REST API | Python SDK
#Krone | Autonomous farming systems | Manufacturer of agricultural machinery | Autonomous drive unit acting as smart system that can plow, cultivate, sow, mow, turn and swath
#Levatas | Builds end to end AI solutions, machine learning models, and human in the loop systems automating visual inspection | Teamed with Boston Dynamics
#run.ai (RUN AI) | Accelerating AI development with comprehensive life cycle support from concept to deployment | Software Toold for AI System Development and Deployment
#Forterra | AutoDrive | Driverless system | Autonomous vehicle system.| Vehicle-platform and payload agnostic | In-Vehicle, Remote or Garrison Oversight | Off-Road/On-Road | GPS-Denied Operation | Single-Vehicle Waypoint Route Navigation | Multi-Vehicle Convoys and Platooning | Static and Dynamic Obstacle Avoidance | Mission Re-Pathing | Retrotraverse and Reverse Platooning, with Trailers | Ouster lidar
#OndoSense | Radar distance sensor | Sensor software: integrated into control system or used for independent quality monitoring | Object detection | Distance measurement | Position control | Agriculture: reliable height control of the field sprayer | Mining industry | Transport & Logistics | Shipping & Offshore | Mechanical and plant engineering | Metal and steel industry | Energy sector | Harsh industrial environments | Dust & smoke: no influence | Rain & snow: no influence | Radar frequency: 122GHz | Opening angle: ±3° | Measuring range: 0.3 – 40 m | Measuring rate: up to 100Hz | Output rate: up to 10 ms / 100 Hz | Measurement accuracy; up to ±1mm | Measurement precision: ±1mm | Communication protocol: RS485; Profinet, other interfaces via gateway | Switching output: 3x push-pull (PNP/NPN) | Analogue output: Current interface (4 – 20 mA) | Protection class: IP67
#Heliogen | AI-controlled concentrating solar thermal technology | AI, cameras, advanced computer vision software precisely aligni array of small mirrors reflecting and concentrating sunlight on receiver tower | Receiver generates heat which is transferred to thermal energy storage | Providing steam heat up to 300 °C | Cameras installed at top of tower measure color intensity of sky as reflected in mirrors | By comparing intensities as seen from multiple cameras, system calculates mirror orientation and direction of beam, for real-time hyper-accurate tracking | AI technology for continuous micro-adjustments | System automatically adapts to atmospheric conditions | WiFi connects heliostats | Direct Steam Generating Receivers (DSGR) absorb concentrated sunlight and transmit energy to pressurized water within metal tubes | Manufacturing facility in Long Beach, California
#BlueRobotics | Natural feature navigation | SLAM navigation | Driving AGV manually around the site | Recording data from vehicle safety laser scanners | Cleaning map by removing any dynamic objects | Programming required routes for AGV | Autonomous Navigation Technology (ANT) | Automated Guided Vehicles (AGV)
#Ecorobotix | Plant-by-Plant AI detection and treatment softwareAlgorithms to detect and treat an extensive array of crops and weeds | High-resolution camera system for scanning | Recognition and differentiation of useful and harmful plants by computer | Control over precision nozzels | Real-time imagery capturing amd object ifrntification in less than 250 milöiseconds | Spray footprint of 6x6 cm (2.4x2.4 in). | Precision agriculture by accurately detecting and treating individual plants
#Samsung Electronics | Neural Processing Unit (NPU)
#MIT | Autonomous Systems Development Facility (ASDF) | Enabling the development and testing of autonomy algorithms and capabilities | Prototyping and testing of ground-based, aerial, and undersea autonomous systems | Infrared sensors | Integrated motion capture system | Reflective tags on vehicles | Indoor positioning system generating GPS signals | Dry running systems indoors before major outdoor field tests | UAV copter with propeller with low acoustic signature | System for countering unmanned aircraft in urban environment
#picknik.ai | Remote Robot Control
#Advanced Navigation | Inertial measurement unit (IMU) | Heading reference system (AHRS) | Acoustic navigation | AI-based acoustic processing techniques | Subsea transponder | Sidney, Australia
#Celeramotion | Precision Components | Mechatronic Assemblies
#Chieftek Precision | Miniature robotic arms
#ICEYE | Synthetic aperture radar (SAR) | Maritime monitoring
#Jetson Orin Modules | NVIDIA | Advanced robotics and edge AI applications
#AutoMarineSys | Autonomous Marine Systems
#awake.ai | AI-driven Optimisation Platform for Port Operations
#beomni.ai | AI brain | Learning tasks over time | Humanoid robot | Reacting to haptic feedback it receives through sensors | Can distinguish its hand from the object its grasping | Obstacle avoidance and path planning for navigation | Learning by Observation | Beomni AI can plan and schedule physical tasks based on priorities | Can perform multiple physical tasks simultaneously
#IDS | Industrial image processing | 3D cameras | Digital twins can distinguish color | Higher reproducible Z-accuracy | Stereo cameras: 240 mm, 455 mm | RGB sensor | Distinguishing colored objects | Improved pattern contrast on objects at long distances | Z accuracy: 0.1 mm at 1 m object distance | SDK | AI based image processing web service | AI based image analysis
#LookOut | AI vision system | Synthesized data from charts, AIS, computer vision, and cloud fusing it into one 3D augmented reality view | Connects to existing boat display | Mountable camera system to the top of any boat | Lookout App for laptop, phone or tablet | Infrared vision | Night vision sensor | Spotting small vessels, floating debris, buoys, people in water | Blind spot detection | Backup camera | Temperature breaks, bird cluster locations, underwater structures for anglers | Camera streaming over WiFi to phones and tablets on the boat | Over-the-air (OTA) updates | Marine-grade water-proof enclosure | Integrated with satellite compass | National Marine Electronics Association (NMEA) communication standard interface | Multifunction Display (MFD) | Multi-core CPU driving augmented reality compute stack | ClearCloud service | NVIDIA RTX GPU for real-time computer vision | DockWa app
#SiLC | Machine Vision solutions with FMCW LiDAR vision | FMCW at the 1550nm wavelength | Eyeonic Vision Sensor platform | Detecting vehicles and various obstacles from long distances | Honda Xcelerator Ventures | Honda Marine
#Flyability | Drones for industrial inspection and analysis | Confined space inspection | Collision and crash resistant inspection drone | 3D mapping | Volumetric measurement | Inspections of cargo ships, bridges, ports, steel mills cement factories, liquid gas tanks, nuclear facilities, city wide underground sewage systems | Ouster lidar
#National Technical University of Athens | MariNeXt deep-learning framework detecting and identifying marine pollution | Sentinel-2 imagery | Detecting marine debris and oil spills on sea surface | Automated data collection and analysis across large spatial and temporal scales | Deep learning framework | Data augmentation techniques | Multi-scale convolutional attention network | Marine Debris and Oil Spill (MADOS) dataset | cuDNN-accelerated PyTorch framework | NVIDIA RTX A5000 GPUs | NVIDIA Academic Hardware Grant Program | AI framework produced promising predictive maps | Shortcomings: unbalanced dataset, marine water and oil spills are abundant, foam and natural organic material are less represented
#Google DeepMind Technologies Limited | Creating advanced AI models and applications | Artificial intelligence systems ALOHA Unleashed and DemoStart | Helping robots perform complex tasks that require dexterous movement | Two-armed manipulation tasks | Simulations to improve real-world performance on multi-fingered robotic hand | Helping robots learn from human demonstrations | Translating images to action | High level of dexterity in bi-arm manipulation | Robot has two hands that can be teleoperated for training and data-collection | Allowing robots to learn how to perform new tasks with fewer demonstrations | Collectung demonstration data by remotely operating robot behavior | Applying diffusion method | Predicting robot actions from random noise | Helpung robot learn from data | Collaborating with DemoStart | DemoStart is helping new robots acquire dexterous behaviors in simulation | Google collaborating with Shadow Robot
#Movu Robotics | Robotics | Automated pallet storage solution | Accessible cold storage automation | Temperature-controlled food and pharmaceutical industry | Space optimisation in storage | Streamlined materials handling process | Energy efficiency for cold storage | Robotics for low temperatures with icy and slippery surfaces | Automated Storage and Retrieval System (AS/RS) | Automating picking | Fleet management software
#Tampere University | Pneumatic touchpad | Soft touchpad sensing force, area and location of contact without electricity | Device utilises pneumatic channels | Can be used in environments such as MRI machines | Soft robots | Rehabilitation aids | Touchpad does not need electricity | It uses pneumatic channels embedded in the device for detection | Made entirely of soft silicone | 32 channels that adapt to touch | Precise enough to recognise handwritten letters | Recognizes multiple simultaneous touches | Ideal for use in devices such as MRI machines | If cancer tumours are found during MRI scan, pneumatic robot can take biopsy while patient is being scanned | Pneumatic device can be used in strong radiation or conditions where even small spark of electricity would cause serious hazard
#NVIDIA | GH200 Grace Hopper Superchip | Boosting TTFT in multiturn user interactions | Building contextual understanding of input sequence | Retrieval Augmented Generation (RAG) | Converting user prompt to tokens and then to highly dense vectors | Dot product operations | Building mathematical representation of the relationship between all tokens in prompt | Operations repeated across different layers of the model | Generating key-value cache (KV cache) | Reusing KV cache | KV offloaded from GPU memory to higher capacity and lower cost CPU memory | KV cache reloading back to GPU memory | KV cache offloading, eliminates need to recompute KV cache without holding up valuable GPU memory | Enabling multiple users to interact with the same content without recalculating KV cache for each new user | Speeding code generation in integrated development environments (IDEs) that have LLM capabilities, one or more developers can submit multiple prompts interacting with single code script over extended periods of time, offloading initial KV cache calculations onto CPU memory and then reloading it for subsequent interactions avoids repeated recalculations and saves valuable GPU and infrastructure resources | NVIDIA TensorRT-LLM | Llama 3 70B model running on server with NVIDIA H100 Tensor Core GPUs connected through PCIe to x86 host processor | Compelling deployment strategy for data centers
#Allen Institute for Artifical Intelligence | Robot planning precise action points to perform tasks accurately and reliably | Vision Language Model (VLM) controlling robot behavior | Introducing automatic synthetic data generation pipeline | Instruction-tuning VLM to robotic domains and needs | Predicting image keypoint affordances given language instructions | RGB image rendered from procedurally generated 3D scene | Computing spatial relations from camera perspective | Generating affordances by sampling points within object masks and object-surface intersections | Instruction-point pairs fine-tune language model | RoboPoint predicts 2D action points from image and instruction, which are projected into 3D using depth map | Robot navigates to these 3D targets with motion planner | Combining object and space reference data with VQA and object detection data | Leveraging spatial reasoning, object detection, and affordance prediction from diverse sources | Enabling to generalize combinatorially.| Synthetic dataset used to teach RoboPoint relational object reference and free space reference | Red and ground boxes as visual prompts to indicate reference objects | Cyan dots as visualized ground truth | NVIDIA | | Universidad Catolica San Pablo | University of Washington
#BrainChip | Ultra-low power, fully digital, event- based, brain-inspired AI | Low power acceleration co-processor | Enabling very compact, ultra-low power, portable and intelligent devices | Accelerates limited use case-specific neural network models | SDK for rapidly developing and deploying AI applications for Edge | Support for models created with TensorFlow/Keras and Pytorch | Event-based compute platform ideal for early detection, low-latency solutions | Development contract from Air Force Research Laboratory (AFRL) on neuromorphic radar signaling processing technologies | Mapping Complex Sensor Signal Processing Algorithms onto Neuromorphic Chips | Improving cognitive communication capabilities on size, weight and power & cost (SWaP-C) constrained platforms such as military, spacecraft and robotics | Embedding sophisticated radar processing solutions in SWaP-C constrained radar platforms | Low-power, high-performance computing in the most mission-critical use cases | Hardware and AI model using Temporal Enabled Neural Network (TENNs) model